Estimating and interpreting latent variable interactions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Latent-Variable Graphical Models using Moments and Likelihoods

Recent work on the method of moments enable consistent parameter estimation, but only for certain types of latent-variable models. On the other hand, pure likelihood objectives, though more universally applicable, are difficult to optimize. In this work, we show that using the method of moments in conjunction with composite likelihood yields consistent parameter estimates for a much broader cla...

متن کامل

Explicit estimating equations for semiparametric generalized linear latent variable models

We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the sem...

متن کامل

Estimating latent feature-feature interactions in large feature-rich graphs

Complex networks arising in nature are usually modeled as (directed or undirected) graphs describing some connection between the objects that are identified with their nodes. In many real-world scenarios, though, those objects are endowed with properties and attributes (hereby called features). In this paper, we shall confine our interest to binary features, so that every node has a precise set...

متن کامل

Shaking Hands in Latent Space - Modeling Emotional Interactions with Gaussian Process Latent Variable Models

We present an approach for the generative modeling of human interactions with emotional style variations. We employ a hierarchical Gaussian process latent variable model (GP-LVM) to map motion capture data of handshakes into a space of low dimensionality. The dynamics of the handshakes in this low dimensional space are then learned by a standard hidden Markov model, which also encodes the emoti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Behavioral Development

سال: 2014

ISSN: 0165-0254,1464-0651

DOI: 10.1177/0165025414552301